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Abstract
Climate change impacts on ectotherms will be a consequence of an interplay between 
species-specific evolutionary effects, population-level local adaptation, and developmen-
tal or plastic effects in individuals. While variation in thermal tolerance resulting from 
species physiological differences and local adaptation are well researched, how variation 
in plasticity across habitats might impact vulnerability to climate change remains poorly 
understood. We studied microhabitat (understory vs. open) distributions and the plasticity 
in thermal tolerance of four Bicyclus butterfly species across forest and ecotone (savanna-
forest transition zone) habitats in Cameroon. For each species, we performed common 
garden experiments at two stable temperature regimes (20 and 30 °C) and quantified larval 
and adult thermal tolerance. We found clear differences in distributions across species 
such that two species were more associated with open microhabitats (B. dorothea and B. 
vulgaris) while two others were more understory associated (B. sanaos and B. sandace), 
with variation across seasons and habitats (forest vs. ecotone). Three species exhibited 
higher plasticity in critical thermal maximum (CTmax) in the ecotone relative to the forest 
indicating the importance of the interaction between habitat and developmental tempera-
tures in influencing thermal tolerance. Microhabitat distributions were also consistent with 
trends in thermal tolerance; the most understory-associated species had both the lowest 
average CTmax and lowest plasticity in CTmax in the ecotone. Our findings suggest that mi-
croclimate and thermal adaptation shape plastic responses to thermal tolerance, and these 
factors will likely result in heterogenous responses to climatic change for tropical insects.

Keywords  Climate change · Developmental plasticity · Habitat preference · Ecotone · 
Forest · Microhabitat

Introduction

The accelerating rate of global warming presents a serious challenge to most organisms, 
especially ectotherms whose physiological and biochemical processes are strongly affected 
by environmental temperature (Urban 2015; Pacifici et al. 2015). To cope with the rapidly 
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changing climate, organisms can: adapt through evolutionary changes (Hoffman and Sgro, 
2011; Schou et al. 2014; Diamond 2017), shift their geographical distribution (Parmesan 
1996; Thomas 2010), or acclimate to novel environments through phenotypic plasticity, 
including behavioural thermoregulation (Kearny et al., 2009; Rodrigues and Beldade 2020). 
While studies have increasingly characterized the genetics underlying thermal adaptation 
(Ware-Gilmore et al. 2023; Milucki et al., 2024) and plasticity in thermal tolerance (Gunder-
son and Stillman 2015; Lockwood et al. 2018; Rodrigues and Beldade 2020), knowledge 
gaps remain, especially in the tropics (Merilä 2012; Sheldon 2019).

Phenotypic plasticity allows organisms to cope with rapidly changing environments 
(Ghalambor et al. 2007; Bonamour et al. 2019). At the physiological level, plasticity in 
thermal tolerance traits can be the result of developmental conditions (e.g., temperature) 
experienced by immature stages (Stillman 2003; Sgro et al., 2016; Kellerman et al., 2017) 
that may provide a means to increase their fitness and those of adults (though not always), 
and thereby contribute to the future survival of populations or species facing climate varia-
tion (Rodrigues and Beldade 2020; Buckley 2022). In fact, adult fitness of arthropods is 
determined by the growth and development rates of immature stages that are themselves 
controlled by temperature (Forster et al. 2011; Soltani Orang et al. 2014) through the well-
known temperature-size rule (Atkinson 1994) and the metabolic theory of ecology (Brown 
et al. 2004). These two theories broadly highlight that, in ectothermic organisms, high 
developmental temperatures should lead to small-sized individuals and high metabolic rates 
in resulting adults that can determine responses to elevated temperature.

Habitats (e.g., forest vs. grassland) and microhabitats (e.g., canopy vs. understory, or 
shaded forest vs. open forest) can also exert strong influence on thermal tolerance of species 
(Moiroux et al. 2013). For example, Montejo-Kovacevich et al. (2020) demonstrated the 
role of habitat as an important predictor in determining thermal sensitivity of ten Helico-
nius butterfly species in the Ecuadorian Andes – highland species had significantly lower 
heat tolerance compared to populations found in the lowland of the same area. Similarly, 
in Ghana, Woon et al. (2022) found that termites from forest (covered by canopy) have 
considerably lower heat tolerance compared to those from savanna open environments 
exposed to more elevated temperatures. Microhabitats provide shelters and refugia which 
can provide an escape from extreme conditions and are also important considerations for 
quantifying exposure that can influence thermal adaptation. In army ants, microhabitat is a 
primary predictor of thermal tolerance with below-ground species being particularly sensi-
tive to temperature change as a consequence of adaptation to lower temperatures (Baudier 
et al. 2015). Habitat at multiple scales (e.g. elevation, land cover, and vertical) can therefore 
shape thermal tolerance of insects and determine their distributions and vulnerability to 
climate change (Alruiz et al. 2022).

Variability in the thermal sensitivity of life stages represents an additional complicating 
factor underlying the prediction of insect responses to climate change (Kingsolver et al. 
2011). In the fall army worm (Spodoptera frugiperda), for example, adults exhibited lower 
maximum thermal tolerance (CTmax) than larvae (Phungula et al. 2023). In the butterfly 
Bicyclus anynana, Klockmann et al. (2017) found that heat tolerance was highest for pupae 
and lowest in eggs and hatchlings. For butterflies generally, relative to adults, larvae may 
also have a lower ability to thermoregulate, with limited capacity to move long distances 
towards optimal thermal conditions or away from extremes (Ashe-Jepson et al. 2023). Cli-
mate change responses in ectotherms are then expected to be a complex interplay between 
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the thermal sensitivity of immatures stages, which generally have a reduced mobility (e.g., 
larvae of butterflies) and that of adults as their mobility can help them escape from deleteri-
ous effects of warming through behavioural thermoregulation (Stevenson 1985; Abram et 
al. 2017) and contribute to the evolution of thermal response of the species (Lafuente and 
Beldade 2019).

Tropical insects suffer from a range of knowledge gaps and lack of research which chal-
lenges predictions of their responses to environment change (Slade and Ong 2023). Mod-
elling studies have highlighted a possible high vulnerability to future warming in tropical 
insects given that environmental temperatures are already close to their upper thermal limits 
(Deutsch et al. 2008; Kingsolver et al. 2013). However, microclimates and thermoregulation 
may provide relief from thermal extremes for tropical insects (Bonebrake et al. 2014). How 
these different factors that shape thermal tolerance – plasticity, habitat, microhabitat, and 
life stage – then interact to influence thermal sensitivity should be a priority for understand-
ing climate change impacts of insects, especially in the tropics.

Butterflies of the genus Bicyclus (Kirby, 1871) are endemic to Africa where they occupy 
many habitat types (Aduse-Poku et al. 2017). Bicyclus are also well known for often exhibit-
ing seasonal polyphenism in morphological features (Brakefield and Larsen 1984, Dongmo 
et al. 2018) and local adaptation to habitat types in thermal tolerance, e.g. B. dorothea 
(Dongmo et al. 2021). During the past four decades, several species from the genus have 
been extensively used to explore many aspects of phenotypic plasticity such as wing mor-
phology and behaviours under laboratory and natural conditions (e.g., Windig et al. 1994; 
van Bergen et al., 2017, Halali et al. 2021a, b).

In this study, we make use of the diversity of macro and microhabitats present in Camer-
oon to examine their roles in driving plasticity in thermal tolerance. We studied populations 
of four Bicyclus species (B. dorothea, B. sanaos, B. sandace, and B. vulgaris) originating 
from two contrasting habitats: tropical rainforest characterized by relatively small variation 
in temperatures and a forest-savanna transition ecotone known to be more variable ther-
mally (Tsalefack et al., 2003). First, we conducted field surveys in each habitat (forest and 
ecotone) to assess the seasonal microhabitat (open vs. understory) associations of the tar-
get species. We hypothesized that the seasonal microhabitat association and distribution of 
the four Bicyclus species would be consistent with patterns of thermal tolerance quantified 
under laboratory conditions. We also hypothesized that forest populations of the four Bicy-
clus species experiencing low temperature variation would be less thermally plastic than 
their ecotone counterparts that are exposed to a greater thermal variation in the wild. To test 
this, we subjected populations of these butterfly species to one of two constant temperatures 
(approximate minimum and maximum temperatures for populations in shaded/understory 
ecotone and forest habitats) during their development in a common garden environment. 
Specifically, we predicted that more open associated butterflies (possibly B. vulgaris and 
B. dorothea) would have higher thermal tolerance relative to more understory species (pos-
sibly B. sandace and B. sanaos).
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Methods

We sampled four species of Bicyclus butterflies across two habitats in Cameroon, ecotone 
and forest. We conducted ecological surveys to assess the association of the species with 
two microhabitats, either understory or open, in both habitats (see Microhabitat associa-
tions below). From each of these habitats we established lab colonies to test thermal toler-
ance under distinct thermal conditions (see Plasticity in thermal tolerance below).

Habitats and study species

Cameroon has a complex topography and its vegetation and climate show dramatic varia-
tion across the country’s extensive latitudinal gradient (~ 2–14°N) (Servant and Servant 
2000). Vegetation types across the country range from tropical dense forest in the south, 
isolated montane forests in the north-west, to large savannas and Sahelian landscape in the 
north (Djoufack 2011). We sampled in two localities of Cameroon - ~450 km apart - Ndi-
kiniméki (N 4.76986, E 12.7332) and Somalomo (N 3.37405, E 12.7332) (Fig. S1). The 
average altitude in Ndikiniméki is ~ 800 m at sea level (a.s.l) and the area receives rainfall 
seasonally twice a year amounting to 1,700  mm/year with a monthly mean temperature 
ranging between 22 and 25  °C (Tsalefac et al. 2003; Dongmo et al. 2018). The vegeta-
tion is described as ecotone, largely composed of a mosaic of gallery forests and savannas 
(Smith et al. 1997). Somalomo is a small village situated in the southern part of Cameroon 
dominated by dense tropical rainforest and is in the vicinity of one of the country’s largest 
protected areas, the Dja Faunal Reserve. The average altitude of Samolomo is ~ 600 m a.s.l. 
The location has an equatorial climate receiving rainfall seasonally twice a year amounting 
to ~ 2,000 mm/year and monthly mean temperature varies between 22 and 24 °C (Dongmo 
et al. 2018).

Four Bicyclus species were selected for thermal tolerance assessment based on their pres-
ence in both forest and ecotone habitats and their microhabitat preference (especially shaded 
vs. open habitats) as described by previous studies (Larsen 2005; Vande Weghe 2010). Bicy-
clus dorothea is known to prefer open forest areas such as roads or forest fringes, but is 
mostly absent from primary forest (Vande Weghe 2010; Dongmo et al. 2017). Bicyclus 
vulgaris is found in similar habitats but is also common in pre-forest, dense savannah and 
agricultural lands (Larsen 2005). Bicyclus sandace has been recorded from a range of habi-
tats and its habitat preferences appears to vary across regions. For example, Vande Weghe 
(2010) found that B. sandace is abundant in Gabonese forest, but absent in open savannas, 
while Larsen (2005) noted that it was common in forest habitat, agriculture lands and also 
in dense savannah. From our observation in Cameroon, B. sandace occupies openings in 
the forest and forest galleries but we also found some individuals in the savannah and the 
species appears to be typically more tied to the vicinity of forests than B. vulgaris. Finally, 
B. sanaos is mostly found in rainforests and in ecotones where it prefers understories and is 
generally not found in open savannah (Larsen 2005; Vande Weghe 2010).

Given these species descriptions in the literature (and based on our experience) we then 
predicted that B. sanaos would be the most forest-restricted butterfly of the four, present in 
lower abundances in ecotone and most restricted to understory microhabitats for both forest 
and ecotone habitats. We also predicted that both B. vulgaris and B. dorothea would be most 
abundant in both ecotone habitats and in open area microhabitats, while B. sandace would 
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be intermediate in preference for particular microhabitats. Phylogenetically, B. dorothea, B. 
sandace, and B. vulgaris all belong to the “dorothea-group” and are closely related to one 
another while B. sanaos belongs to the “martius-group” (Aduse-Poku et al. 2017).

Laboratory colonies of each species were established from 438 individuals collected 
from populations in both ecotone and forest habitats. Bicyclus butterflies in more open habi-
tats generally enter reproductive diapause in the dry season (Brakefield et al., 1991; Halali et 
al. 2020) so we collected butterflies in the wet season in two sampling bouts in each habitat: 
B. dorothea and B. vulgaris were collected in October 2018 and B. sandace and B. sanaos 
in September 2019.

Microhabitat associations

We conducted a 20-day survey of two microhabitat types: closed understories and open 
areas. These surveys were conducted in both of the investigated habitats/sites (ecotone and 
forest) during both the wet and dry seasons. The dry season in both localities (Somalomo 
and Ndikiniméki) usually lasts from mid-November to mid-March and the wet season from 
mid-March to mid-November. For the dry season, we conducted sampling in January 2019 
for Somalomo (forest) and January 2020 for Ndikiniméki (ecotone), while wet season sam-
pling was conducted in August 2019 for Ndikiniméki and September 2019 for Somalomo.

In each habitat, we chose six stations for carrying out fruit-baited trapping with a min-
imum distance of at least 1  km between stations. The exact location of the trap station 
depended on the availability of the two microhabitats, “open area” and “closed understory”. 
At each station, we set two traps: one in an open area and the other in the closed understory 
at least 70 to 100 m apart. Standard conical pop-up butterfly bait traps (Bioquip 1422 cone 
trap) were used for sampling. Each trap was placed such that the base hung at about 20 cm 
above ground. For each trap, we added overripe banana mixed with locally sourced palm 
wine that had been fermented for at least one day. We applied tangle-foot on the hanging 
ropes of the trap as well as on the branches of the trees where the trap was set to prevent ants 
from accessing the traps. To avoid recaptures of the same individual butterflies, the position 
of the traps in each station was changed (at least 100 m from the previous position) every 
two days within each microhabitat and trapped individuals were marked on their wings 
using small scratches on the wings to enable us to identify any recaptured individuals.

To characterize habitat associations, the traps were inspected, re-baited (if necessary) 
daily and butterflies collected between 9 AM to 4 PM. Trapped specimens were identified in 
the field using available identification literature (Larsen 2005; Vande Weghe 2010). Speci-
mens that were difficult to identify accurately in the field were brought back to the labora-
tory for further identification. The ambient temperature of each microhabitat was recorded 
using Thermochron iButton data loggers (model: DS1922, ± 0.5 °C accuracy) suspended at 
2 m from the ground and protected from direct sunlight. The position of each data logger 
was changed every two days within the microhabitat. Data loggers were programmed to 
record the temperature at 30-minute intervals throughout the 20-day survey.

Plasticity in thermal tolerance

For our common garden experiment, all collected butterflies were transported to the Interna-
tional Institute of Tropical Agriculture (IITA) entomological laboratory based in Yaoundé, 
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Cameroon. Overall, we obtained 438 wild caught individuals distributed as follow: 
Somalomo: (B. dorothea N = 68; B. sandace N = 18; B. sanaos N = 27), Ndikiniméki: (B. 
dorothea N = 102; B. sandace N = 40; B. sanaos N = 32; B. vulgaris N = 62). For each species 
from the two habitats, we placed five females and five males into cages (24 × 24 × 24 cm) 
made of white polyester screen (to facilitate air circulation), containing mashed banana as 
adult food and distilled water-soaked cotton (Brakefield et al. 2009). These set-ups were 
kept in a shade house with mean temperature of ~ 26 °C, mean relative humidity of ~ 78% 
and a photoperiod of L12:D12. Pot-grown millet (Pennisetum glaucum) was chosen for 
oviposition due to its of cultivation under laboratory conditions. Eggs were collected and 
transferred to moist black filter paper in Petri dishes, and hatchlings were then transferred 
onto fresh potted-lawn grass, Axonopus compressus, a natural host plant of these species 
readily available at the vicinity of the laboratory. These first-generation larvae were grown 
in large cages (30 × 30 × 30 cm) until the adult stage. However, despite multiple trials, we 
were unable to rear and maintain forest populations of B. sanaos under these laboratory 
conditions. For this reason, we were unable to quantify the thermal tolerance proxies (CTmin 
and CTmax) for the forest population of B. sanaos.

Adults of the first fully lab-reared (F1) generation were kept in the same conditions as 
the founding individuals. Following eggs laid by the F1 females, first instar larvae (i.e., sec-
ond generation larvae F2) were placed on A. compressus and randomly allocated to climate 
cabinets (I-36 VL Percival Scientific Inc., Perry, IA, USA) set at 20–30 °C, at 75% RH and 
a photoperiod of L12:D12. Fifth instar larvae (F2) and one-day-old adults (F2) of ecotone 
and forest populations of all four species reared at 20 °C and 30 °C were used in the thermal 
tolerance assays. These temperatures are roughly equivalent to expected minimum (~ 20 °C) 
and maximum (~ 30 °C) temperatures experienced by ecotone and forest Bicyclus species 
in shaded habitats (Dongmo et al. 2021) – which should then approximate the thermal con-
ditions of the understory microhabitat. The large difference in temperature across the two 
experiments also maximized the ability to detect differences in thermal tolerance across the 
developmental temperatures and estimate plasticity (see Data analysis below). The number 
of larvae and adults assessed for thermal tolerance (CTmin and CTmax) for each temperature 
treatment are illustrated in Table S1.

We estimated the upper and lower thermal limits using a dynamic method (i.e., tem-
peratures were raised or decreased until thermal stress observed) which is an ecologically 
relevant measure of thermal tolerance consisting of exposing an organism to a gradual heat-
ing or cooling at a fixed rate within an environmental chamber (Terblanche et al. 2011). 
Using this approach, we took two different measurements: (1) the critical thermal minimum 
(CTmin), defined as the temperature at which an experimental individual is no longer able to 
move any appendages following a gradual cooling of the environment at a given rate; (2) 
the critical thermal maximum (CTmax), defined as the temperature point before an experi-
mental individual begins to make uncoordinated movements, due to excess heat following 
a gradual increase of the temperature at a given rate (Lutterschmidt and Hutchison 1997).

Typically, larvae in Bicyclus butterflies develop into five instars (Condamine, 1973). 
Before assessment of thermal tolerance of the fifth instar larvae, we weighed each individual 
using a high precision Jewellery GEM50 scale at the nearest 0.001 mg. The larval weight 
was assessed to determine if it can have a potential implication in thermal response as lar-
vae were reared under two different temperature regimes. We then placed larvae individu-
ally in 47 mm Petri dishes with parts of their covers cut out and replaced by a fabric wire 
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mesh to allow air circulation. The Petri dishes were placed in a climate cabinet set to the 
same temperature (20–30 °C) that was used during the rearing of each group. Adults were 
not weighed and kept individually in small plastic 250-mL bottles with about 25 holes of 
~ 5 mm diameter. The temperature inside the climate cabinet was then lowered (for CTmin) 
or raised (for CTmax) at a constant rate of 0.25 °C/min, following Terblanche et al. (2011). 
CTmax for larvae was determined when the larva started twitching its body or regurgitating 
a greenish liquid. In contrast, the CTmin for larvae was the lowest temperature at which each 
individual was not able to make any movement, and unable to hold onto the wall of the Petri 
dishes during the experiment.

In adults, the CTmin was determined by noting the temperature at which an individual 
was no longer able to move its appendages (antennae, legs, wings) while CTmax was the 
temperature at which individuals started making uncoordinated movements. We used each 
experimental individual only in a single trial (CTmax or CTmin) to avoid effects from previ-
ous exposure influencing the results. During assessments, we observed the behaviour of 
(individual) larvae and adults through a glass window in the main door of the climate cabi-
net to determine its CTmin or CTmax. Through the same window, we monitored the real-time 
temperature variation within the cabinet using a water-proof thermometer probe (DE:30 W, 
DER EE, New Taipei City, Taiwan). Overall, we reared 1498 forest individuals (all species, 
see details in Table S1) at two temperature treatments (i.e., 786 at 20 °C and 712 at 30 °C), 
and 3015 ecotone individuals (1616 at 20 °C and 1399 at 30 °C). We then performed CTmin 
and CTmax experiments on a total of 2866 s generation fifth instar larvae, and 1647 s gen-
eration (F2) adult butterflies (all species, habitats and rearing temperatures combined (see 
Table S1).

Data analysis

We used R version 4.4.1 (R Core Team, 2024) for all statistical analyses. We investigated 
whether thermal tolerance traits i.e., CTmin and CTmax for larvae and adults were affected 
by rearing temperature and habitat in each species. In order to do so, we used linear mixed 
models (lmer function in R) with rearing temperature, habitat (forest or ecotone), and their 
interactions as fixed effects, larval weight as a covariate and species as a random intercept. 
Pairwise comparisons with Tukey’s posthoc test was conducted using the package emmeans 
(Lenth et al., 2022) for mean separation between groups. The degrees of significance in ther-
mal tolerance traits was estimated by calculating the effect size (Cohen’s d) using the mean 
and standard deviation of the data at 20 °C and 30 °C for each species using the package 
Durga (Khan and McLean 2024).

Furthermore, following Stillman (2003), we investigated the developmental plasticity of 
upper and lower thermal limits of larvae and adults of each species in each habitat by calcu-
lating the absolute difference between the mean CTmax of the two rearing temperatures (i.e., 
ΔCTmax = CTmax 30 °C - CTmax 20 °C) of all individuals; the same formula was applied for 
CTmin (i.e., ΔCTmin = CTmin 30 °C - CTmin 20 °C). A bootstrap was applied to the estimations 
of ΔCTmax and ΔCTmin with 10,000 replications using the function “boot” of the package 
boot ver. 1.3–31 (Canty and Ripley 2024). Positive (or negative) values indicate the ability 
of species to increase (or decrease) its upper (or lower) thermal limits following rearing at 
low or high temperatures (Stillman 2003).
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To test for the variation in abundance of the four Bicyclus species in each microhabitat 
(open or understory), we fitted separate generalized linear models (with a negative bino-
mial error or zero inflated negative binomial distribution to avoid overdispersion) for each 
species using the glm.nb or zeroinfl functions built in the package “pscl” v1.5.9 (Zeileis et 
al. 2008). In each model, we used habitat (forest or ecotone), microhabitat (open or under-
story), and seasons (wet or dry) as predictors along with their interactions. To check for 
the overdispersion of the models, we visually inspected the normality of residuals versus 
fitted values using the Q-Q plots. We also calculated the indicator value index (IndVal) of 
each butterfly species to verify their affinity/preference to microhabitat types. The indica-
tor value index quantifies the fidelity and the specificity of a given species in relation to a 
particular habitat or sites. Higher IndVal number correspond to strong fidelity/association 
to a particular habitat or site (Dufrêne and Legendre, 1997). The IndVal calculations were 
performed using the “multipatt” function of the package “indicspecies” v. 1.7.12 (Caceres 
and Legendre, 2009).

Results

Microhabitat associations in bicyclus

Microhabitat temperature data revealed consistently higher mid-day temperatures (by about 
4–5 °C) in the open ecotone sites vs. understory sites. For forest sites, this was the case in 
the wet season (higher by about 4–5 °C) but much less so in the dry season (only higher 
by about 1–2 °C) (Fig. S2). Results from the generalised linear model revealed that habi-
tat, microhabitat, and season were significant predictors of the abundance of B. dorothea, 
B. sandace, B. vulgaris, and B. sanaos during the survey (Fig. 1; Table S2). Interactions 
between microhabitat and season were also significant across species (Table S2). Bicyclus 
dorothea, B. sandace and B. vulgaris were more abundant in ecotone where they were asso-
ciated with open microhabitat and exhibited the highest numbers during the wet season. The 
indicator values obtained were consistent with results from the generalized linear model for 
B. dorothea (IndVal: 0.445; p = 0.002) and B. vulgaris (IndVal: 0.360; p = 0.020) as to their 
preference for open microhabitats in both forest and ecotone. In contrast, B. sanaos was 
more abundant in the understory microhabitat (IndVal: 0.499; p < 0.001), and most were 
recorded in the ecotone during the wet season (Fig. 1; Table S2). Temperature patterns were 
also consistent with expectations as ecotone open sites had highly elevated temperatures 
relative to the habitat and microhabitat combinations (Fig. S2).

Plasticity in thermal tolerance

For adults, rearing temperature was a significant predictor for CTmin in all species and 
exhibited a greater difference for ecotone populations of B. dorothea (Cohen’s d = 2.088, 
95% CI [1.730, 2.408], B. sandace (Cohen’s d = 2.681, 95% CI [2.083, 3.105] and the for-
est population of B. vulgaris (Cohen’s d = 1.197, 95% CI [0.905, 1.498]) (Table 1; Fig. 2). 
The effect size estimation revealed that adults reared at higher temperature had the higher 
CTmax in both habitats for B. dorothea (forest: Cohen’s d = 1.228, 95% CI [0.714, 2.098]; 
ecotone: Cohen’s d = 1.380, 95% CI [0.897, 1.982]) and only in ecotone habitat for B. vul-
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garis (Cohen’s d = 1.694, 95% CI [1.281, 2.071]) and B. sandace (Cohen’s d = 0.912, 95% 
CI [0.441, 1.832]).

For larvae, there was a strong effect of rearing temperature characterized by an increase 
CTmin values with increasing temperature in most species and habitat combinations (Fig. 3), 
except in B. sandace (Cohen’s d = 0.377, 95% CI [0.100, 0.687]). For example, for B. dor-
othea, effect size revealed significant differences in CTmin between the two rearing tem-
peratures in ecotone (Cohen’s d = 1.407, 95% CI [1.173, 1.648]) and in forest (Cohen’s 
d = 0.711, 95% CI [0.336, 1.105]) populations. For B. vulgaris, rearing temperature only 
affected CTmin in forest (Cohen’s d = 1.320, 95% CI [1.043, 1.574]) but not in the ecotone 
(Cohen’s d = 0.251, 95% CI [−0.034, 0.520]) populations. Larval weight did not have a sig-
nificant effect for any species (estimate: 0.002 ± 0.001; p = 0.065). Similar to CTmin, rearing 
temperature was a strong predictor of CTmax variation for larvae in all species, except forest 
population of B. sandace (Cohen’s d = −0.325, 95% CI [−0.653, 0.335) (Table 1; Fig. 3). 
The CTmax of individuals reared at 30 °C was 1 to 2 °C higher compared with those reared 
at 20 °C for almost all species.

For the three species for which we have data, ΔCT was always higher for ecotone popu-
lations relative to forest for both larvae and adults (Fig. 4). We found a similar pattern for 
CTmin except that B. vulgaris had higher plasticity in forest relative to ecotone (Fig. 4).

Fig. 1  Relative abundance of each species across microhabitats in the forest and ecotone sites during 20-
day surveys in the wet and dry seasons
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Discussion

Plasticity in thermal limits will be a key mechanism through which species can effectively 
manage some of the impacts of rapid climate change. We found strong habitat-specific 
(forest vs. ecotone) plasticity across populations in addition to clear microhabitat affinities 
(open vs. understory) for all species. For both larvae and adults, ΔCTmin and ΔCTmax were 
higher in the ecotone for all three species (except for ΔCTmin in B. vulgaris). We also found 
that microhabitat associations match thermal tolerance patterns – the most open-habitat 
associated species (B. dorothea and B. vulgaris) had the highest thermal tolerance while B. 
sanaos was the most-understory associated species and had the narrowest thermal tolerance. 

Table 1  Summary of statistical results of the linear mixed model for the relationship between thermal toler-
ance traits (CTmin and CTmax) and environmental predictors for second-generation larvae and adult individu-
als in four Bicyclus species
Stage Traits Model parameters Estimates Lower CI Upper CI t-value P-value
Larva CTmin Fixed effects

Intercept 5.132 4.662 5.597 21.117 < 0.001
Habitat 0.435 0.238 0.629 4.359 < 0.001
Rearing temperature 0.913 0.679 1.146 7.641 < 0.001
Larval weight 0.002 −0.000 0.003 1.853 0.065
Habitat*Rearing temperature −0.180 −0.458 0.098 −1.263 0.207
Random effects

logLik AIC LRT df P-value
1 | Species −2202.1 4416.3 61.001 1 < 0.001

CTmax Fixed effects
Intercept 45.271 44.792 45.720 192.893 < 0.001
Habitat 0.320 0.172 0.461 4.352 < 0.001
Rearing temperature 0.818 0.629 1.002 8.605 < 0.001
Larval weight −0.001 −0.002 0.000 −1.009 0.313
Habitat*Rearing temperature 0.523 0.303 0.742 4.667 < 0.001
Random effects

logLik AIC LRT df P-value
1 | Species −2143.2 4299.2 30.178 1 < 0.001

Adult CTmin Fixed effects
Intercept 4.739 4.223 5.257 19.946 0.004
Habitat 0.977 0.758 1.191 8.858 < 0.001
Rearing temperature 1.789 1.609 1.970 19.403 < 0.001
Habitat*Rearing temperature −1.033 −1.327 −0.739 −6.887 < 0.001
Random effects

logLik AIC LRT df P-value
1 | Species −1302.6 2615.3 54.535 1 < 0.001
Fixed effects

CTmax Intercept 42.177 41.170 43.180 13.195 < 0.001
Habitat 2.124 0.940 3.315 784.109 < 0.001
Rearing temperature 0.129 0.100 0.160 784.363 < 0.001
Habitat*Rearing temperature −0.087 −0.132 −0.040 784.173 < 0.001
Random effects

logLik AIC LRT df P-value
1 | Species −1546.6 3103.2 61.089 1 < 0.001
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Fig. 3  Plasticity in critical thermal minimum (CTmin) and maximum (CTmax) of second-generation lar-
vae of four Bicyclus species (B. dorothea, B. vulgaris, B. sandace and B. sanaos) initially reared at two 
constant temperatures (20 and 30 °C) and originating from two contrasted habitat (forest [in purple] vs. 
ecotone [in orange]) in Cameroon. Bicyclus sanaos is not included for forest habitat because all our trials 
failed during common garden experimentation. Error bars represent the standard error of the mea

 

Fig. 2  Plasticity in critical thermal minimum (CTmin) and maximum (CTmax) of second-generation (F2) 
adults of four Bicyclus species (B. dorothea, B. vulgaris, B. sandace and B. sanaos) initially reared at two 
constant temperatures (20 and 30 °C) and originating from two habitats (forest [in purple] vs. ecotone [in 
orange]) in Cameroon. No data is available for the forest population of Bicyclus sanaos because all our 
trials failed while carrying out the common garden experiment. Error bars represent the standard error 
of the mean
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However, our results highlight that such predictions can be complicated by habitat-specific 
patterns in plasticity and microhabitat associations – the combination of thermal tolerance 
levels, plastic responses, and microhabitat usage will likely drive heterogeneous responses 
to warming for tropical species.

We found strong microhabitat associations across the four species, setting up the oppor-
tunity to examine the interactions between microhabitat associations and broader habitat/
temperature developmental origins. Both B. vulgaris and B. dorothea were commonly 
associated with both understory and open habitats, across seasons and habitats. Fermon 
et al. (2000) found that both of these species were associated with open habitats as well. 
Conversely, B. sanaos was only reliably found in understory microhabitats, regardless of 
season or habitat – consistent with its reputation as a rainforest associated species (Oostra 
et al. 2014). B. sandace could be found in both microhabitats but was most abundant in 
the forest understory during the wet season. The microhabitat abundance survey therefore 
also revealed the importance of seasonal variation, which was not explicitly addressed in 
our plasticity experiments. For logistical purposes, we derived our lab colonies from wet 
season individuals while results for dry season individuals could exhibit differential pat-
terns – especially when microhabitat associations vary across seasons, as they do here for 
Cameroon Bicyclus.

For Bicyclus in this study, both ΔCTmax and ΔCTmin increased in the warmer ecotone 
habitat while changes were not constant in the forest. Consistent with our results, Shah et 

Fig. 4  Plasticity in upper and lower thermal limits in larvae and adults of four Bicyclus species originally 
from two habitats (ecotone vs. forest). Plasticity here is defined as the mean difference in thermal limits 
between individuals developed at 20 °C and 30 °C; values were bootstrapped 10,000 times
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al. (2017) found that thermal acclimation ability was higher in more seasonal temperate 
environments in mayflies compared to less seasonal tropical environments. The relationship 
between absolute CTmax and ΔCTmax is predicted to be negative (Stillman 2003; Pörtner et 
al. 2006) reflecting a trade-off between maintaining high tolerance vs. acclimation ability. 
However, for the Bicyclus species studied here, thermal tolerance variation across species 
was low relative to variation across habitats and rearing temperature. We also found lower 
thermal tolerance in forest-associated species which has been observed previously for a 
range of tropical ectotherms (Simon et al. 2015; Nowakowski et al. 2018), and in compari-
sons of ecotone vs. forest populations in particular (Landry Yuan et al., 2018, Dongmo et al. 
2021). Our results suggest that different species and populations across habitats are likely 
to employ variable strategies for withstanding thermal extremes using some combination of 
thermal tolerance dependent on rearing temperature (ΔCT) and thermal tolerance which is 
not (e.g., habitat determined).

Ontogeny and environmental context will further dictate the sensitivity of tropical insects 
to climate change. In addition to temperature, plasticity is a consequence of complex mul-
tifactorial environmental factors such as light, food, humidity and other habitat-linked vari-
ables (Rodrigues and Beldade 2020; Ling and Bonebrake 2022). Moreover, both thermal 
tolerance and its plasticity can vary by developmental stage in insects (Kingsolver and 
Buckley 2020). We found that plasticity (ΔCT) tends to be lower for ecotone larvae in 
Bicyclus but was otherwise consistent across life stages and habitats. Carter and Sheldon 
(2020) found that metabolism was plastic in adults but not in pupae of dung beetles. A 
meta-analysis by Weaving et al. (2022) found that insect juveniles generally have greater 
plasticity in thermal tolerance relative to adults. In another study, Lockwood et al. (2018) 
found a high thermal tolerance in tropical strain embryo of Drosophila melanogaster com-
pared to the temperate strain, but no difference in adults from the same distinct strains. Our 
findings depart from this pattern as in our case, the ΔCT was similar between larval and 
adult individuals for the forest populations and slightly higher (by about 1 °C) in adults for 
the ecotone. Such findings are important as they highlight other potential unknown factors 
governing thermal plasticity in ectotherms. For example, Overgaard et al. (2011) show that 
widely distributed Drosophila species versus tropical restricted species in Australia were 
not driven by plasticity in thermal tolerance, but likely explained by innate thermal toler-
ance limits. Similarly, Kellermann et al. (2018) observed that desiccation tolerance in 32 
Drosophila species was tightly linked with phylogenetic signal rather than environmental 
factors.

Evolutionary and genetic mechanisms underlie variation in thermal tolerance observed 
in this study (García-Robledo and Baer 2021). In Bicyclus anynana, Franke et al. (2019) 
found that adult temperatures caused variation in the expression of antioxidant markers 
and upregulated certain metabolic pathways which may affect thermal tolerance. Develop-
mental temperatures can also affect the regulation of gene expression pathways for insects 
(Alston et al. 2020). Such mechanisms may likely underlie some of the patterns and varia-
tion across developmental temperatures we observe here. However, phenotypic plasticity 
in Bicyclus could potentially hinder evolutionary responses to rapid global warming if for-
merly reliable environmental cues become maladaptive (Oostra et al. 2018). There can also 
be reproductive consequences to high tolerance and high plasticity (Bogan et al. 2024). 
Continued investigation of the genomic and metabolic pathways that determine tolerance 
will allow for improved assessments of species vulnerability to climate change.
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Microhabitats can play a role in shaping species thermal sensitivity and vulnerability 
(Sunday et al. 2014). This is particularly true for butterflies that can exploit a wide range 
of thermal variability within landscapes (Bonebrake et al. 2014). For Bicyclus, understories 
and open microhabitats can show marked variation in thermal fluctuations and could allow 
or restrict species occupancy based on their thermal tolerance. B. sanaos are rarely found 
in open microhabitats while B. dorothea and B. vulgaris regularly occur in both open and 
closed habitats. Corroborating with their microhabitat preference, we found that B. sanaos 
had the narrowest thermal tolerance. Interestingly, B. sandace exhibited low plasticity for 
thermal tolerance in forest where it was largely restricted to understory microhabitats but 
higher plasticity in ecotone where it was found in both open and understory. This suggests 
that microhabitat thermal conditions can drive a species’ thermal tolerance and plasticity. 
Finally, a comparative study showed that ancestral Bicyclus were likely forest-linked and 
colonized savannah habitats around 8 − 3 million years ago and species in both these habi-
tats show marked divergence in life-history traits including diapausing strategy, body size, 
growth rates and fecundity (Halali et al. 2021a, b). Such differences in life history are likely 
to factor into structuring thermal tolerance and shaping differences between forest and open 
habitat species.

Our results demonstrate that plasticity differences across habitats, and associated micro-
habitats, are likely to be important in driving responses to thermal variation and climate 
change. Complex interactions between habitat and climate at multiple scales, and across 
life stages, will ultimately shape ecological and evolutionary patterns relevant to projecting 
climate change impacts on biodiversity. For tropical insects, habitats and microhabitats will 
drive variation in microclimates that will determine exposure to thermal variation (Kemp-
pinen et al. 2024) – more closed microhabitat or forest species may have lower plasticity 
in thermal tolerance. Because different species and populations have variable microhabitat 
preferences and thermal tolerance can depend on developmental temperature, heteroge-
neous responses to warming could be a consequence of these important interactions.
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