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Abstract

Background: Long-distance migration has evolved multiple times in different animal taxa. For insect migrants, the
complete annual migration cycle covering several thousand kilometres, may be performed by several generations,
each migrating part of the distance and reproducing. Different life-cycle stages and preferred orientation may thus,
be found along the migration route. For migrating red admirals (Vanessa atalanta) it has been questioned if they
reproduce in the most northern part of the range. Here we present migration phenology data from a two-year
time series of migrating red admirals captured at Rybachy, Kaliningrad, in the northern part of Europe investigating
time for migration, life-history stage (migration, reproduction) as well as site of origin in individual butterflies.

Methods: Red admirals were captured daily at a coastal site during spring, summer and autumn in 2004 and 2005.
For the sampled individuals, reproductive status and fuel content were estimated by visual inspection, and
hydrogen isotopes (δ2H) were analysed in wing samples. δ2H values was compared with samples from two nearby
reference sites in Estonia and Poland.

Results: Analysis of hydrogen isotopes (δ2H) in red admiral wings showed that the spring cohort were of a
southerly origin, while those caught in August or later in the autumn were from the local region or areas further to
the north. All females caught during spring had developing eggs in their abdomen, but no eggs were found in late
summer/autumn. There was a male-biased sex ratio during autumn and a difference in lipid content between years.
When comparing the isotopic data with inland nearby locations, it was clear that the range of δ2H values (− 181 to
− 78) was wider at Rybachy as compared to the two reference sites in Estonia and Poland (− 174 to − 100).

Conclusions: During spring, migratory female red admirals arrived from the south and were ready to reproduce,
while the autumn passage mainly engaged local and more northern individuals carrying large fuel deposits in
preparation for long-distance migration. The phenology data suggest that individuals select to migrate in
favourable weather conditions and that numbers may differ between years. Future studies should focus on
individual sampling at a wide range of sites to reveal differential migration strategies and timing of migration
between sexes and populations of migrating butterflies.
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Introduction
Animals have evolved different migration strategies,
including repeated long-distance annual migration be-
tween sites used for breeding and wintering [4, 7],
and multi-generational circannual migration in butter-
flies across wide latitudinal ranges [17, 48] to explore
seasonal resources across the globe. Depending on re-
source availability, migration may be regular or irrup-
tive and engage different numbers of individuals each
year. Irruptive migration is regularly observed in birds
and insects [23, 38].
The red admiral (Vanessa atalanta) performs a fairly

regular migration in contrast to many of the long-distance
migrating butterflies found in Europe, such as the painted
lady (Vanessa cardui) (e.g. [19, 39, 48]) which shows larger
variation between years. Migration varies in intensity, tim-
ing and origin [13, 15], but red admirals usually reach
northern Europe in large numbers each spring. These im-
migrants reproduce and give rise to new generations that
migrate south later in the season to reach areas suitable
for reproduction during winter, although parts of the
population apparently spend the winter hibernating. Trad-
itionally red admirals were thought to overwinter in areas
around the Mediterranean Sea in a state of reproductive
diapause. However, modern studies have disputed this
providing evidence that they are actively reproducing
throughout winter and that the spring migration is per-
formed by a new generation of adults [12, 14, 47]. Most
reports of red admiral hibernation are from northern re-
gions, but this behaviour seems to be of little importance
for the new generation that hatches the following summer
as there is no correlation between observed numbers over-
wintering and monitoring counts towards the end of the
season [40]. It may however be possible that individuals
from the eastern parts of the range are specialised winter
hibernators even at more southerly latitudes [13]. Since
most insect migrants are far more variable in their migra-
tion than, for example, birds (e.g. [7, 23]), we still lack
long-term studies of insect migrants from the same loca-
tion, and which may provide information on migration
phenology, fuel load and reproductive status. Coastal loca-
tions are generally better suited than inland areas for ob-
serving red admirals (e.g. [10, 15, 28, 41]), because higher
numbers often are a consequence of the funnelling effects
of topography and the tendency of the red admirals to
avoid crossing large water bodies [15].
The objective of this study was to obtain a continuous

two-year time series of red admiral samples from one loca-
tion to obtain detailed insights into the spring and autumn
migration phenology, geographic origin, reproductive and
migratory status of individual butterflies for this northern
study site. Most other studies of migrating red admirals
represent snap-shots in time (e.g. [30]; cf. [15]) or are from
varied locations (e.g. [28]). Even though these studies

have provided insights on the variable migration of
the species, the daily pattern of migration and how
migration intensity varies between years has not been
documented systematically, with some exceptions [15].
We set up the following hypotheses: 1) we expected
to catch red admirals of southern origin during spring
migration, and from the north or local origin in au-
tumn, 2) we expected no difference in sex ratio be-
tween seasons, 3) we expected a larger fraction of
butterflies in spring to be prepared for reproduction,
and 4) we expected no difference in fat content be-
tween seasons or years, as all individuals captured
would be prepared for migration. To test these hy-
potheses we extensively sampled red admirals at one
fixed coastal location at a bird ringing station at
Rybachy, where large numbers of red admirals con-
centrate. Sampled butterflies were then analysed for
stable hydrogen isotopes (δ2H) (to determine relative
areas of natal origin), sex, breeding status, and lipid
content.

Materials and methods
Study location and collection of red admirals
Rybachy (55°2’N, 12°8′E) is situated at the Curonian
spit, a long and narrow peninsula at the eastern shore
of the Baltic Sea (Fig. 1). Red admirals were collected in
a large permanent trap of the “Rybachy-type”. This is a
trap built from netting and shaped like a large funnel
with an opening in the direction from which the mi-
grants arrive, passively catching migrating birds and in-
sects. At the far end of the trap is a collecting box. The
dimensions of the trap are 70*35*15 m (Lengh*Width*-
Height) and it is operated daily between 1 April to 1
November on a yearly basis. Red admirals that were
caught in the trap were euthanized using ethyl acetate
and the wings were then removed for δ2H analyses. The
wings were stored dry in glassine envelopes until iso-
topic analysis. The head and the body were stored in
99.9% ethanol for later analysis of sex, breeding status
and lipid content. We captured red admirals over two
spring and autumn seasons in 2004 and 2005. On days
with large numbers of red admirals we sampled a frac-
tion of the captured individuals (5–10). We recorded
the numbers captured each day to be able to estimate
yearly differences in the intensity and median date of
migration.

Analysis of hydrogen isotopes
We analysed hydrogen isotope ratios in the wings of red
admirals compared our results of samples collected at
our coastal site at Rybachy with two nearby inland sites
in Estonia and Poland. These inland samples were repre-
sented by 15 individuals captured in Estonia (Karilatsi)
between 11 and 28 August in 2004, and 20 individuals
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collected in 2005 between 14 September and 2 October
at two locations in southern Poland (Czestochowa and
Ktomnice) (Fig. 1).
All red admiral wing samples were soaked with

chloroform-methanol solution (2:1) rinses, to remove
surface oils that could affect the H isotope assays and
air-dried. Stable hydrogen isotope analyses were con-
ducted at Environment Canada in Saskatoon, using the
comparative equilibration technique so that the values
reported here are equivalent to non-exchangeable
hydrogen [46, 52]. Stable-hydrogen isotope measure-
ments of wings and the calibrated keratin standards
were done on H2 derived from high-temperature (1300
°C) flash pyrolysis of wings and continuous-flow
isotope-ratio mass spectrometry. The reference values
used for our keratinous H standards calibration was −
197 ‰ and − 54 ‰ for CBS and KHS, respectively [46].
All H isotope results are expressed in the delta (δ2H)
notation in units of per mil (‰), and normalised to the
Vienna Standard Mean Ocean Water – Standard Light
Antarctic Precipitation (VSMOW-SLAP) standard
scale. Based on within-run measurements of a control
standard (SPC) and consideration of within sample
variance [53], the laboratory error for δ2H was <±2 ‰.

Precipitation data
We acquired interpolated monthly δ2H values for the
rainwater at Rybachy by using the Online Isotopes in
Precipitation Calculator (OIPC) (http://wateriso.uta-
h.edu/waterisotopes/index.html). Previous studies have
shown that the δ2H values in butterfly wings are cor-
related to the δ2H of precipitation at their natal site
(for details on the transfer function see, [14]). We
used the OIPC data for precipitation to estimate the
expected δ2H values for butterflies of local origin in the
Rybachy region over the whole sampling period. Since the
OIPC generates a mean δ2H value per month, we calcu-
lated a set of local mean δ2H for the middle third of each
month and extrapolated the values in the first and last
third of each month. This approach allowed us to assess
whether captured red admirals were likely of local origin,
or if they had migrated to the Rybachy area from the
north (lower δ2H values than expected local values) or
south (higher δ2H values than expected local values).

Sex, breeding status and lipid class determination
To determine the sex of individual butterflies and evalu-
ate the amount of lipid reserves, we dissected the abdo-
men of the red admirals captured at Rybachy. Sex was

Fig. 1 Location of sites were red admirals were captured from 2004 to 2005. Most red admirals in this study came from Rybachy in Kaliningrad in
Russia (RU), located at the eastern shore of the Baltic Sea. Some additional material was also collected in Karilatsi in Estonia (ES), and in
Czestochowa and Ktomnice in Poland (PO). Data from the inland capture sites in Estonia and Poland were compared with the coastal site
at Rybachy
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determined by visually inspecting the genitalia by micro-
scope. To estimate lipid content we cut the wall of the
abdomen open along one side using a fine pair of scis-
sors and visually scored the amount of lipids in the ab-
dominal cavity. When red admirals use up their lipid
resources, a clear cavity begins to form in the stored ab-
dominal fat. We estimated lipid reserves using a scale
with six different classes from 0 (no fat) to 5 (abdomen
cavity filled with fat). The criterion for each class is
given in Table 1 and Fig. 2. In females, we also checked
for the presence or absence of developing eggs to get an
indication of breeding status.

Statistical analysis
Since there was a clear drop in the number of red admi-
rals captured around mid July we analysed early (up
until 31 July, spring) and late (from 1 August, autumn)
samples separately. We did not remove δ2H outliers in
our analyses, since the large natural variation in δ2H
makes it impossible to ensure that outliers (as long as
they are within a possible biological range) are not re-
cruits from other populations. SPSS 15.01 assigned only
7 δ2H values as “outliers” when looking at the data di-
vided according to study year and season. Analyses were
not affected by the presence or absence of the outliers.
SPSS 15.01 was used for all statistical calculations.
We used Mann-Whitney U-tests to calculate dif-

ferences in median passage dates between various
subsets of the data. We used a t-test to analyse dif-
ferences in δ2H between 2004 and 2005 in the au-
tumn group. Differences in yearly mean date of
passage during both seasons were analysed using a

t-test. Differences in sex ratio between the two years
as well as deviations from an equal ratio of males
and females both in the whole data set and separ-
ately for spring and autumn were analysed using
χ2-tests. Differences in mean date of capture for the
different sexes in both seasons were compared using
t-tests. To analyse if there was any difference in sex
ratio between days with low and high migratory in-
tensity, we divided the autumn material into two
groups (the spring data was not analysed because of
the low numbers of individuals available). This was
done because we wanted to investigate if days with
lower numbers were affected more by locally mov-
ing individuals (males) as compared to intense mi-
gration days where we expected both sexes being
represented at equal numbers. For 2004, we desig-
nated days with more than ten individuals captured
as high intensity days and for 2005 we lowered the
limit to more than five since total numbers ob-
served was smaller that year. Differences between
the two groups were analysed using a χ2-test.
To analyse differences in lipid reserves we performed an

ANOVA with lipid class as dependent variable and used
sex, study year and sample season as fixed factors. We in-
cluded all possible two-way interactions and removed
them in a backward fashion. Since we had a significant
interaction between season and sex we performed separ-
ate ANOVA tests for males and females.
The raw data used in all analyses is provided as

Additional file 1.

Results
Timing and intensity of migration
Spring migration
The total number of red admirals captured during
spring migration was 82 in 2004 and 15 in 2005.
The median date of passage for the spring migra-
tion was July 4 in 2004 (range: 24 June – 12 July)
and July 6 in 2005 (range: 25 May – 25 July)
(Fig. 3a). Since we had very few individuals in 2005
this value may be somewhat unreliable, although it
was very close to the passage date noted the previ-
ous year. The median date of passage for the au-
tumn migration was October 2 in 2004 (range: 3
August – 8 October, N = 341) (Fig. 3b) and Septem-
ber 25 in 2005 (range: 15 August – 14 October, N
= 125) (Fig. 3c). There was no significant difference
between years for the median passage dates in
spring (Mann-Whitney U-test, U95 = 419.5, Z = 1.95,
N2004 = 82, N2005 = 15, p = 0.051). The median dates
of passage in the autumn was however significantly
different between years (Mann-Whitney U-test,
U464 = 18,392, Z = 2.27, N2004 = 341, N2005 = 125, p =
0.023).

Table 1 Criteria for division of samples from red admirals into
different classes based on the abdominal lipid content.
Proportion and number of individuals assigned to each class in
the two years of the study is also presented. Images of one
example from each class is presented as Fig. 2

Fat Class Criteria for inclusion % of total (N)

2004 2005

0 Abdominal compartment completely
emptied of lipid

9% (11) 9% (8)

1 Large cavity in the abdominal lipid
reserve

32% (38) 10% (9)

2 Small cavity in the abdominal lipid
reserve

24% (28) 10% (9)

3 No visible cavity in lipid reserve,
abdomen of normal size

31% (37) 25% (23)

4 Abdomen larger than normal
because of substantial amounts
of lipid, but not completely filled

1% (1) 17% (15)

5 Abdomen much larger than
normal and completely filled
with lipid

3% (3) 29% (26)
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Measured and predicted δ2H values
Rybachy
The δ2H values differed between the spring and au-
tumn individuals for both years (Fig. 4). The expected
δ2H values for locally grown butterflies (for details
see [14]) show that all individuals from the autumn
samples were of either local or from more
north-eastern natal origins. The spring individuals in
2004, especially those sampled later in that period
corresponded with local and more southerly origins.
In 2005, all spring individuals had δ2H values corre-
sponding to more southerly origins. The mean δ2H
values measured during autumn was − 129.7 ‰ ± 1.39
‰ (SE) in 2004 and − 136.3 ‰ ± 1.82 ‰ (SE) in 2005
and this difference was significant (t-test, t = 2.86,
N2004 = 86, N2005 = 79, p = 0.005).

Estonia and Poland
The δ2H values in samples from our two inland reference lo-
cations are shown in Fig. 5, plotted in relation to the samples
from Rybachy captured at a similar time. The range
of δ2H values is far greater in the Rybachy samples
(2004: min = − 172.1 ‰, max = − 102.4 ‰, range = 69.7
‰, and 2005: min = − 180.8 ‰, max = − 107.3 ‰,
range = 73.5 ‰) than for the inland locations (Estonia,
2004: min = − 140.8 ‰, max = 99.4 ‰, range = 41.4 ‰

and Poland, 2005: min = − 117.3 ‰, max = − 74.4 ‰,
range = 42.9 ‰.

Differences in sex ratios
There was no difference in median date of capture
between sexes during spring (Mann-Whitney U-test,
U42 = 237.5, Z = 0.082, NMales = 23, NFemales = 21, p = 0.94)
or autumn (Mann-Whitney U-test, U162 = 3043.5, Z = 0.73,
NMales = 96, NFemales = 68, p = 0.46), nor was there any dif-
ference in sex ratio depending on the intensity of the mi-
gration (χ21, 165 = 0.78, p = 0.38). There was no difference in
sex ratio between the two years (χ21, 208 = 0.21, p = 0.89)
and the pooled data from both years showed a sex ra-
tio that was significantly biased towards more males
(χ21, 208 = 4.33, p = 0.038). When analysing the spring
and autumn material separately, it was clear that this differ-
ence was only present in the autumn (spring: χ21, 43 = 0.23,
p = 0.88; autumn: χ21, 165 = 5.10, p = 0.024).

Breeding status of females
All of the females captured during the spring season had
developing eggs in the abdomen (N2004 = 16 (Date: 24
June – 12 July), N2005 = 5 (16 June – 8 July). During the
late summer/autumn season we found no visible eggs in
any of the sampled females (N2004 = 35 (Date: 3 August
– 4 October), N2005 = 33 (19 August – 14 October)).

Fig. 2 Visual scale for fat classification in red admirals (Lipid class 0-5). Descriptions for the fat classes are given in Table 1
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Differences in lipid content
The ANOVA analyses on visually estimated lipid clas-
ses showed a significant effect of year for males
(Table 2a), and for females we found significant ef-
fects of both year and season (Table 2b). Both sexes
were assigned to higher lipid classes in 2005, but for
females there was less effect when comparing only
spring samples (Fig. 6).

Discussion
It is clear from our study that the migrating red admirals
that pass the coastal site at the Curonian spit do so dur-
ing two distinct periods, with a clear drop in migratory
activity during mid summer. The median capture date
was similar over the two studied years for spring and au-
tumn. Even though there was a significant difference be-
tween the times of autumn passage, the absolute
difference was not more than a week, suggesting a regu-
lar migration pattern between years.

The H isotope composition of precipitation correlates
with geographic location, decreasing in δ 2H from
south-west to north-east in Europe [11, 29, 42] and such
patterns are reflected in foodwebs. So, this distinctive
isotopic gradient can be used to infer origin over rela-
tively limited geographical regions as shown for a seden-
tary butterfly species in Sweden [16]. This means δ2H
can be used to help define the natal origin of red admi-
rals from Europe over larger geospatial range, which has
also been confirmed in a European wide study of red ad-
mirals [13]. The methods have also recently been used
to understand the migration of pained ladies [50]. We
found distinct differences in admiral δ2H values between
the spring and autumn seasons at Rybachy, and there-
fore presumably their areas of natal origin. The range of
δ2H was also wider at Rybachy (− 181 to − 78) as com-
pared to Estonia and Poland (− 174 to − 100), suggesting
a larger variation of origin at the coastal site compared
to the inland sites. In spring, every female captured had

Fig. 3 The number of red admirals caught per day in traps for two complete seasons (1 April to 1 November) 2004 and 2005. The captures are
from a both spring seasons, b autumn 2004, and c autumn 2005. Note the different scale on the y-axis. The highest number of red admirals were
captured in autumn compared to spring, and 2005 had much higher numbers than 2004
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developing eggs in the abdomen, but during autumn not
a single female with eggs was found. We also found an
unexpectedly skewed sex ratio in favour of males, but
only during autumn. Difference in lipid content was also
present, but this difference was more pronounced when
comparing years than seasons. In 2005, red admirals
carried considerably larger lipid reserves than the pre-
ceding year, suggesting more favourable conditions for
pre-migration fuelling and possibly shorter migration.

Timing of migration
In a previous study in Denmark, the median date of
observed migration of red admirals over six years
(1995–2000) was September 26. At this site in Denmark
the earliest date with observed migration was August 13,
and the latest October 30 [28]. Thus, the difference be-
tween earliest and latest mean date of migration was
more than six weeks. At Falsterbo in southern Sweden
the median passage of red admirals was studied by visual
counts of migrating butterflies between 2004 and 2006
[15], and showed median dates (2004: September 6,
2005: August 31 and 2006: September 24) somewhat
earlier than in Denmark. The median dates of our cap-
tured individuals at Rybachy were similar to other re-
ported passage dates from northern Europe, but since
we only have data from two seasons we cannot say if
variation at this location is as large as observed in
Denmark [28] and in southern Sweden [15]. It is clear
from the different studies of red admiral migration that
variation in many parameters of butterfly migration (for
example timing and origin of migrants) can be

substantial, and likely heavily dependent on yearly differ-
ences in weather, winds and reproductive success (e.g.
[14, 15, 28, 36]). Data from reported sightings [28], stan-
dardized counts [15] and passive trap captures (this
study), all result in similar time periods. It is therefore
reasonable to assume that the main red admiral autumn
migration in northern Europe occurs around September
in most years. However, the difference in timing and fuel
content may reflect a difference in migration distance
between years, where the red admirals may reproduce at
different latitudes in different years. Future studies, we
suggest, would benefit from more standardized counting
to make comparative studies easier [21].
When looking at the pattern of captures over the sea-

son, it was evident that red admirals do not pass Ryba-
chy continuously, or within one single migration period.
Instead, many days may pass without a single captured
individual, followed by peaks in the capture data when
half of the sampled individuals from one year were cap-
tured over the course of a single week (Fig. 3). This pat-
tern was especially pronounced during autumn. A
similar temporal pattern of red admiral migration has
been reported at Falsterbo in southern Sweden recorded
by visual observations [15]. We may ask what is the rea-
son for these dramatic differences in migratory intensity
that we found? Studies of the effect of weather on migra-
tion of red admirals at coastal sites have shown that
wind direction is important to initiate large-scale migra-
tion [15, 36]. The above-mentioned studies were per-
formed at locations where red admirals are about to
cross open water and therefore may be more dependent

Fig. 4 Measured δ2H values in the wings of red admirals sampled from the trap captures at Rybachy in 2004 (▲) and 2005 (○). The broken line
shows the expected value for locally hatched individuals from the Rybachy region. For details on calculation of this estimate see text and
Brattström et al. [14]
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on favourable winds than at inland sites. Such wind sen-
sitive departures have been shown for migrating song-
birds at coastal sites (e.g. [3], see also [6, 44, 45, 56]).
During migrations and in situations with winds

from the east, red admirals may concentrate in large
numbers at the coastal site at Rybachy. Especially

high numbers could be the result of large-scale hatch-
ing events, occurring after cold periods and initiated
by warm weather. Both explanations are weather de-
pendant, but in different ways, with the first affected
by wind speed and direction during migration and
the second affected by temperatures at development.

Fig. 5 Measured δ2H values in the wings of red admirals sampled in a Estonia (□) in 2004 and b Poland (■) in 2005. Values are plotted together
with the Rybachy values from the same time periods
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In our study, both factors may be involved in the mi-
gration pattern observed.

Skewed sex ratios
In autumn of both years, we found more males than fe-
males in our samples from the Rybachy migration site. In
many butterflies, males hatch before the females [25], but
we found no difference in mean date of capture for the two
sexes of red admirals during autumn migration at Rybachy.
Theoretical modelling of protandry suggest that butterfly
males in species that hibernate before reproduction should

hatch before females [55], and this development pat-
tern would also most likely be selected for in migra-
tory species. In butterflies, often more males than
females are encountered in the field, but the actual
sex ratio as determined by observing hatching individ-
uals is 1:1 [1]. A suggested reason for this is that the
males move around more than females, and therefore
are observed more often [1]. Brattström [12] found
skewed sex ratios when sampling red admirals in Italy
during late autumn and early spring where the red
admirals are breeding. However, this skewed male sex
ratio was interpreted as a sexual difference in
hill-topping behaviour [18], at the high elevation cap-
ture site [12]. When skewed sex ratios that are not
just artefacts of sampling techniques [1, 12] are en-
countered in butterflies and moths, these are almost
exclusively female-biased and are caused by large
scale infection of male-killing Wolbachia parasites
(e.g. [32, 54]). In at least one butterfly species, a sys-
tem exist were a male-biased sex ratio is the norm
[51], but it seems unlikely in our study.
Sex and age differences in migration distance and

wintering areas is common for migratory birds (e.g. [5,
7, 26, 33, 34, 37]). It is, however, questionable if sexual
difference in wintering areas are a reasonable explan-
ation for the sex ratio we found among the red admirals
at our study site. We found developing eggs in all fe-
males captured in spring, but not in females during au-
tumn. This shows that red admirals hatched in
northeastern Europe and passing Rybachy, will most
likely not reproduce in this region but migrate south
before reproducing. The higher fat levels in late autumn
individuals, especially in 2005 also suggest migration
disposition and preparation for long-distance move-
ments. Migrating insects, in general, show less differ-
ence between sexes during the migratory flight period
than during reproduction. After the flight phase,
changes in juvenile hormone levels reshape the insects
from migratory to breeding states were sexual differen-
tiation are more marked (for review, see [24]). Since we
know that red admirals migrate to the Mediterranean
area to reproduce during winter, males and females
must share wintering areas in this region [20, 47]. Mat-
ing before migration is unlikely in red admirals, know-
ing that migration and subsequent breeding are two
distinctly different phases in the life cycle of migratory
insects [22]. We may therefore ask if the sexes in a
sub-population of winter-hibernating red admirals use
different winter regions and is reflected in our data
from Rybachy? We believe that males captured at
Rybachy do not visit the region for hibernation, but
must instead be captured on migrating passage to reach
more suitable winter habitat for reproduction (e.g. [20,
47]). Experimental studies of hibernating red admirals

Table 2 Results of the ANOVA test of effects from study year
and sample season on the assigned lipid class for males and
female red admirals (Vanessa atalanta) sampled in spring and
late summer/autumn in 2004 and 2005 at Rybachy, Kaliningrad.
The presented results are the final model that remains after the
non-significant interaction between the two factors have been
removed

Variable S.S. df F P

a) Males

Sample season 3.4 1 1.64 0.202

Study Year 38.9 1 18.76 < 0.001

Error 240.6 116

Total 956.0 119

b) Females

Sample season 12.1 1 8.41 0.005

Study Year 48.3 1 33.6 < 0.001

Error 123.5 86

Total 760.0 89

Fig. 6 Mean lipid class assigned to male (Δ) and female (●) red
admirals captured at Rybachy in two different seasons 2004 and
2005. The difference between the years was significant and there
was also a significant effect from season in the females. The
errorbars represent ±1 Standard Error
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show that mortality rates increased dramatically in a
moist environment [35], suggesting Rybachy is likely
bad for hibernation. The observation period for this
study, however, was just two weeks. Future studies need
to reveal if skewed sex ratios exist at other locations for
migrating insects present in the northern range of their
distribution.

Differences in lipid content between years and seasons
Even though it has been known for a long time that
lipid content can vary extensively in migrating mon-
arch butterflies (Danaus plexippus) [9], and that red
admirals can store large amount of lipids [27], the
difference in lipid content between years found in this
study was unexpected. We also observed a higher
number of individuals in 2004, indicating that it was
a year with more successful breeding in the northern
part of the range. The high numbers cannot be due
to a second influx from the south later in the season,
since most individuals found during autumn showed
δ2H values of local or more northern origin. One
possibility is that the large number of red admirals
produced during 2004 meant that food sources were
limited in the source area, and individuals therefore
may be leaner than in 2005. Another possibility is
that the foraging situation prior to capture at Rybachy
was more favourable in 2005 compared to 2004, en-
abling red admirals to put on larger fuel stores before
reaching the capture site. A study from Denmark sug-
gested that red admirals in northern Europe can die
in large numbers from starvation if weather condi-
tions during autumn limit the available food and time
for feeding [27]. The red admirals in 2004 could
therefore have been under time pressure and forced
to leave the northern regions with lower fat reserves
(for discussion of time-minimized migration and de-
parture fat loads, see [8]), but this remains to be
shown. Red admirals captured in autumn 2005 had
lower mean δ2H values than in 2004, suggesting a
more northerly origin than 2004. Thus, it could be
that in 2004, we primarily sampled locally hatched
and not migratory individuals, but in 2005 we cap-
tured a majority of migrants with lipid stored ready
for long distance flights. Plotting the fat scores onto
the data shown in Fig. 3 suggest that the fat scores
change towards the end of 2005 with individuals hav-
ing higher lipid scores by the end of the migratory
period (Additional file 2: Figure S1).
If fat stores found in the migrating red admirals are

important for reproduction, we would expect them to
be at their peak prior to reproduction in spring [49],
and in our samples from 2004 we see that females,
even though they were leaner than in 2005, have lar-
ger lipid reserves than the males. A study from Italy

comparing fat content between autumn (before
reproduction) and spring (before migration) found no
difference between these two groups [12], but that
study included only males. At this point, we cannot
fully resolve this question with our data but the pres-
ence of differences in lipid content between years,
and also to some extent between sexes, is something
that deserves more attention in future studies.

Effects of coastal location
We found a wider range of δ2H values in the Rybachy
red admiral samples than samples from the inland lo-
cations of Estonia and Poland. This qualitatively sug-
gests that red admirals at this coastal site arrive from
a diverse catchment area, while the majority of indi-
viduals sampled at inland locations were from the
local surrounding areas. Hansen [28] reported higher
numbers of red admirals from coastal locations in
Denmark compared to inland locations during au-
tumn migration. Studies of flight behaviour of red ad-
mirals [10, 41], as well as monarchs [43] in coastal
regions show that butterflies tend to follow coastlines
and avoid flying over open water. This behaviour
leads to concentrations of individuals from diverse lo-
cations ending up at coastlines that roughly follow
the migratory direction, just as is shown in our sam-
ples from Rybachy. Migration along coastlines have
further been shown in songbirds to be used to com-
pensate for wind drift [2], which may also be a bene-
fit explored by migrating butterflies.

Conclusions
There are few locations in Europe where it is possible
to systematically sample migrating butterflies over
multiple seasons and in relatively high numbers.
Rybachy in Kaliningrad represents one such location,
where our data clearly demonstrate that new insights
on timing of migration, population source areas, and
fat content of migrating individuals as well as sex ra-
tios can be gained for migrating butterflies. Unfortu-
nately, since no similar data sets, systematically
recording migrating insects in Europe [15, 31], are
available we cannot make comparisons with this or
other species collected at other locations, as our
study represent a first attempt to fill this information
gap. Coastal sites with channelling topography con-
centrate migrating butterflies, and will enable suffi-
cient sampling with passive traps. We therefore hope
that our study will inspire bird observatories over
Europe and elsewhere, to include studies of migrating
insects such as day-migrating butterflies in their mon-
itoring programs.
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Additional files

Additional file 1: Raw data on date of capture, sex, presence of eggs,
fat class and deuterium for red admirals captured at different study sites.
(XLSX 19 kb)

Additional file 2: Graphs show the same deuterium data as Fig. 3 in the
main text, but with the two years plotted separately. The fat scores are
shown as different colours. The fat scores are shown as different colours.
(PDF 257 kb)

Abbreviation
VSMOW-SLAP: Vienna Standard Mean Ocean Water – Standard Light
Antarctic Precipitation
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